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ABSTRACT 

Much work has been done on making and perfecting agent-based 

simulations on child safety measures in cars. These simulations, using 

algorithms based on social networks, cultural algorithms etc. try and 

predict what factors are responsible for the propagation of knowledge 

about child safety measures in a given society. One of the biggest factors 

being over-looked in these simulations is the validity of the model. In 

absence of validation against real data, these models may not be a true 

representation of a real world scenario, and the trends predicted though 

these simulations are questionable. This paper proposes a system design 

using regression analysis and predictive data mining on a survey done in 

the field of child safety. Using the result of this data mining process in 

the form of a decision tree, we can initialize our agent-based model with 

data from the survey and later validate the model comparing the results 

to the survey data. Consequently a framework is formed to test different 

agent profile based intervention techniques, so that a decision about 

selecting an intervention technique with a given cost can be 

demonstrated. 
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CHAPTER 1 

INTRODUCTION 
	  

Road accidents are one of the leading causes of deaths in children around the world [39]. 

Car seats are used to prevent children from serious injuries. These car seats reduce the 

risk of injuries in children by a significant amount, yet misuse of these seats is high, even 

in developed countries like Canada [27]. There has been a lot of research done by many 

government and non-government agencies to investigate the reasons for this misuse and 

to reduce it in an effort to increase child safety in cars. Many agent-based models have 

been developed for the same purpose, which predict what factors play a major role when 

it comes to improper use of child safety measures in cars. These models and simulations 

make use of concepts such as cultural learning, social networks, reputation of agents etc. 

Most of these models aim to predict the extent of spread of knowledge about child safety 

measures in cars over a period of time. These simulations present the user with a set of 

parameters in order to define and control various characteristics and behaviors. These 

parameters are used to drive the algorithms being used in the simulation. Some examples 

of these parameters are the learning rate, accident rate etc. 

 

With the rise in better computing power, researchers and computer scientists have 

developed many simulations to dig deep into knowledge propagation [6-16,21-28], and 

hence use of agent-based modeling has increased for the same, as it has ability to model 

complex emergent phenomena, that more traditional modeling approaches cannot capture 

easily. In agent-based model, the individual or agent is the atomic model element, rather 

than the social system as a whole. Modeling of heterogeneous agents, their decision-
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making processes and social interactions are very explicit in agent-based models. The 

macro-level dynamics of the social system emerge dynamically from the aggregated 

individual behavior and the interactions between agents. An end-to-end model, which can 

predict future trends by analyzing the patterns of knowledge propagation and the factors, 

which affect the rate and extent of knowledge flow, can be very useful when it comes to 

making decisions about policies and methods to promote the flow of knowledge. 

 

 Kobti et al. [40] introduce an agent-based model prototype for child vehicle safety 

injury prevention. This model is further enhanced by adding cultural algorithms [18] and 

social networks [19,20] aspects to it. These models aim to predict the factors responsible 

for the spread of knowledge related to child safety and the pattern/extent of the spread. 

The main drawback with these models was random initialization of the model and agent 

parameters. Ahmed et al. [6] introduce the idea of initializing these models by performing 

predictive data mining on a survey dataset related to child safety. This was the primary 

initial motivation for work presented in this thesis.  

 

1.1   Current Research Motivation 

 

One of the main issues with the present simulations in child safety is the validity of the 

model. There is no guarantee that the trends being shown by these simulations present an 

actual picture of what might happen in the real world. Major cause for this is high use of 

random parameters in these simulations to fill unknown values. Hence, an attempt is 

made to minimize this by using the values of parameters which are calculated after 
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analysis and mining of an actual survey data. The survey used here is the Canadian 

National Survey on Child Restraint Use 2010 [27], which was done in collaboration with 

the University of Windsor and AUTO21, Canada. Data pre-processing, regression 

analysis and mining is performed on the survey data in order to make a decision tree, 

which is then used to initialize the parameters in the agent-based model. This is an 

attempt to improve the quality and accuracy of the agent-based model when it comes to 

compare with real world data. 

 

 Moreover the simulations at present mostly revolve around homogenous agents. 

Heterogeneity of agents in these simulations has not been explored as much as it should 

have been. There are drivers around us with different age, gender, education level etc. Do 

these agent profile attributes like age, gender, education level etc. have anything to do 

with how they learn knowledge? Which intervention will yield better results: an 

intervention with young drivers or an intervention with older drivers? There has been no 

study, which can answer questions like these, taking into account the heterogeneity of 

agents to such an extent. This is an important aspect which plays an important and 

essential role in coining effective intervention policies. 

	  

1.2   Thesis Contribution 

	  

The aim of this research is to create an agent-based simulation on child vehicle safety 

based on an existing survey database, which performs close to real world and then create 

a framework through which we can test effect of different intervention policies on the 
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population using that simulation. The survey database is used to initialize different 

parameters in the agent-based simulation. Regression analysis and predictive data mining 

is performed on the survey database to extract these initialization parameters. Once the 

simulation is performing close to real world scenario, different intervention policies are 

tested on it. This testing is done by Brute force method and by using a Genetic algorithm.  

 

 Hence, the main goals of this study are: 

• To create a close to real world agent-based simulation on child safety using 

regression analysis and predictive data mining on a survey database. 

• To design a framework to test the effect and cost of an intervention policy on 

population using the agent-based simulation. 

•  To use exhaustive, or brute force, methods of analysis on intervention 

framework to determine general trends regarding performance of intervention 

policies based on different agent properties.  This provides a basis for 

comparison for other modeling approaches. 

• To use a Genetic algorithm to find the best intervention policy that can be 

performed under a given cost of intervention. 

	  

1.3   Thesis Outline 

 

The main aim of this research is to create an agent-based simulation on child vehicle 

safety, based on an existing survey database, which performs close to real world and then 

create a framework through which we can test effects of different intervention policies on 
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population using that simulation. In order to discuss this, the thesis has been divided into 

the following chapters. 

 In Chapter 2, a literature review and survey is presented on Child Safety in 

vehicles, agent-based models on child safety, different agent-based simulations on 

patterns and prediction of knowledge flow and on the issue of validation of agent-based 

models. 

 Chapter 3 describes the survey database and different data processing, analysis 

and predictive data mining that were done on it. It also explains the formation of a 

decision tree based on the same processed database. 

 Chapter 4 describes formation of an agent-based model on child safety and 

different algorithms and techniques associated with it. 

 Chapter 5 describes the Intervention Policy framework and different methods that 

were used within the framework to explore the policies. 

 Chapter 6 presents the experiments that were done in the thesis and results 

produced by them, along with discussion of those results. 

 Finally, in the last chapter, the conclusions are presented and some potential 

future directions for this research direction have been suggested. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter includes a short report on previous works done in areas of initialization and 

validation of agent-based models. Some other agent-based models are discussed, which 

concentrate on patterns and prediction of knowledge flow, especially concentrating on 

factors that have major effects like heterogeneity of agents and different types of social 

networks. Then a small survey is presented on different works done in the field of child 

safety in vehicles and agent-based models developed on child safety. This survey also 

includes the terminologies related to these theories and models. It includes practical 

applications of these models in different fields, with focus on child safety measures.  

 

2.1   Validation in Agent-Based models 

	  

Agent model validation has been a major issue in the area of social simulations, but yet 

there have not been many systematic considerations of whether different approaches to 

validation are appropriate for different approaches to modeling. Validation of models 

typically requires experts to look at the data, as errors and unwanted artifacts can appear 

in development of agent-based models. Some validation methods might be preferable to 

others when it comes to a particular style of agent-based models. Validation in agent-

based models are broadly divided into following three categories [61]: 
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2.1.1 Empirical Validation 

	  

These validations are based on the comparison amongst the result obtained from the 

model and what we can observe in the real system. This gives a measurement of how 

good the model is in some given situations, but can’t assure that it will prove with 

accurate results for situations which are different from those that can be observed in the 

real world. Moreover, just because the model gives the same results as the real world is 

no guarantee that the results have been obtained in the same way through the same 

processes. 

 

2.1.2 Predictive Validation 

	  

This type of validation tries to give a proof that the results can be obtained through a 

model will have a validity in situations which are not directly observable in the real 

world. This is essential for purposes like “what-if” analysis and, in general, for the 

models that simulate non-repeatable phenomena like social and economic ones. 

 

2.1.3 Structural Validation 

 

This validation technique is concerned on the process by which the simulation results are 

obtained. A model can give results, which seem accurate, but are obtained through a 

totally different process than the real world. Hence the model should be examined and 
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inspected in order to guarantee that all the interacting parts are same as the corresponding 

real ones. 

 

Windrum et al. [52] explain empirical validation procedures conditioned by their 

perspective as agent-based economic models. The discuss about a set of issues that are 

common to all models engaged in empirical validation giving rise to a novel taxonomy 

that captures the relevant dimensions along which agent-based models differ. They also 

explain three alternative methodological approaches being developed in empirical 

validation – indirect calibration [54], the Werker-Brenner approach to empirical 

calibration [55] and the history friendly approach [56]. 

 

 Balci [53] presents guidelines for conducting verification, validation and 

accreditation (VV&A) of simulation models. Fifteen guideline principles are introduced 

to help researchers and practitioners comprehend what VV&A is all about. The activities 

under VV&A are described in modeling and simulation life cycle.  The author also 

provides with taxonomy of 38 different V&V techniques for object oriented simulation 

models and 77 techniques for conventional simulation models. Baqueiro et al. [57] tackle 

the problem of standard verification and validation methodologies over agent-based 

modeling and simulation. Pure mathematical models deal with analytical equations only. 

The authors introduce integration of data mining with agent-based systems.  They had 

technical difficulties to detect accurate and imperfect data in a given dataset.  

 

 Garcia et al. [58] research on validation process of marketing model along with 
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calibration, verification in the industry level, and harmonization. They tried to find out 

the best validation method, level of validation and how to learn which model was correct. 

A new calibration method is introduced, which is based on conjoint analysis that 

incorporate real world data into market based simulations. It is stated that conjoint data 

results are meaningful on an individual level and also on aggregate level, which is ideal 

for agent-based marketing models. Rand et al. [59] propose model validation by matching 

model components and process to real world, and by matching macro-level aggregate 

patterns, statistics and dynamics that were found across a variety of cases. They claim 

that macro measures they used provide useful information about the spatial patterns of 

real world. Sargent [60] performs data validation to develop theories, and mathematical 

and logical relationships in the model in order to create a conceptual model validation. 

Behavioral data is needed in the operational model validation. The theories and 

assumptions are tested using mathematical analysis and structural methods on data. 

 

	  

2.2   Agent-based Models on Knowledge Flow Patterns and Prediction 

 

In this section, we will have a look on different agent-based models, which are used for 

prediction of knowledge spread and different factors that affect the spread. Everett 

Rogers [1] called this phenomenon of spread of knowledge in a society as ‘Diffusion of 

Innovation’ [2,3]. Different factors and elements of the models, which affect the 

phenomena of diffusion, are discussed below. 
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2.2.1 Heterogeneity of Agents 

 

Agents can be usually of two types: homogenous and heterogeneous. Heterogeneous 

agents are those, who have varying degree of personal threshold and they are affected by 

word of mouth in different ways. Delre et al. [13] investigate how heterogeneity of agents 

effects the diffusion of innovation as shown in Figure 2.1. In the new proposed model, 

the consumer decides according to both his/her individual preferences and experienced 

social influences by other agents in the environment. 

 

 

Figure 2.1 The S curves of diffusion varying with degree of heterogeneity [13] 

 

Every agent communicates to its neighbors and diffusion happens through Word 

of mouth (WOM). Utility U of a product j depends on individual preference and social 

influence for a specific agent i. Agent adopts the product when Ui,j>Ui,j,min, where Ui,j 
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represents utility of product j for user i and Ui,j,min is the minimum utility for 

acceptance. It was observed that the speed of diffusion is low when personal threshold 

are high. Varying the heterogeneity in simulation resulted that more heterogeneous 

always causes a faster rate of diffusion. The authors claim that in more heterogeneous 

population, diffusion is better than homogeneous population, as critical mass is reached 

sooner. 

 

Goldenberg et al. [15] investigate how the individual behaviors of adopters effect 

the collective diffusion of innovation. This is known as percolation model. This paper 

demonstrates how a microscopic presentation can be used for linking market level model 

to individual level behavior. It also allows examination of effect of heterogeneity in 

communication behavior of adopters on the aggregate adoption level. The percolation 

model has a critical percolation threshold pc such that for a given Q (quality of product), 

if Q>pc an infinite cluster of neighboring buyers can be formed, while for Q<pc all 

clusters of buyers are finite. 

 

Alkemade and Castaldi [6] investigate whether a firm can learn about consumer 

characteristics given limited information and come up with a successful directed 

advertising strategy. The authors use the concepts from the literature on epidemics and 

herd behavior to study the problem of diffusion of innovation. A special genetic 

algorithm is used for the simulation based on the principle of “survival of the fittest”. A 

population is randomly initialized with different strategies as genotypes. Now this 

population is improved in different generations by selection, recombination and mutation. 
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Hence better strategies are passed to next generation. Different diffusion dynamics are 

used by altering topology, advertising strategy and consumer characteristic. 

 

It was seen that when using homogenous consumers, for random strategies, it is 

necessary for network of different agents to be connected for occurrence of cascading. It 

happens easily over random networks. With direct advertising, cascades are achieved 

easily on regular networks. When dealing with heterogeneous consumers, learned 

strategies outperform random ones in every aspect like size and speed of diffusion. The 

authors claim that firms can learn a direct advertising strategy taking into account both 

topology of social network and consumer characteristic. These outperform the random 

advertising strategies.  

 

2.2.2 Structure of Social Network 

  

The three main types of social networks discussed in this section are random network, 

highly clustered and scale free network. Abrahamson and Rosenkopf [4] were one of the 

first to state the effects of social network structures on diffusion process. They introduced 

the idea that each potential adopter experiences a different pressure for adoption, which 

depends on the social structure of the network and number of connection that adopter has, 

along with price, efficiency and legitimacy of the innovation. 
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Figure 2.2 Different types of networks and threshold [6] 

 

Three sets of simulations were performed. The first one tests propositions using a 

basic model of faddish diffusion. The second one explores the robustness of these 

findings assuming that every firm is not equally sensitive to information creating 

bandwagon pressure. The third set of simulation explores how these findings differ when 

model based on Learning is used rather than Fad theories [62]. The basic model 

simulation showed that an increase in network density increases the bandwagon pressure. 

Also the greater the number of pressure points and weaknesses at the boundary of a non-

focal stratum, greater the adopters in it. Boundary pressure points and weaknesses have a 

greater effect on extent of diffusion than higher density network. 

 

Delre et al. [13] relates degree of randomness in a network to innovation 

diffusion. Simulations are run with varying values of network randomness r [.0001– 1], 

alters L [1,2], weight of individual preference (y) Vs social influence (x) b  [.4– 1], and 

personal threshold h [0,0.6]. Graph of Diffusion rate r Vs Randomness rare plotted for 
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every case. 

 

When Randomness was varied, there was a maximum rate of diffusion found at r 

= 0.1. When compared against different values of alter, the trade-off was at L= 1.3.When 

varying value of weight b, it was found that randomness of network effects rate of 

diffusion more drastically when value of b is high. The author later claims that highly 

clustered networks support faster diffusion than random networks. Choi et al. [10] talk 

about network structure along with effects. The conditions of simulations are little 

different than as done by Delre et al. [13]. The results show that failed diffusions are 

more likely to happen, when network is highly random as shown in Figure 2.3. But 

surprisingly random links facilitates rapid diffusion process. Authors claim that presence 

of bridges (random network) reduces average social distance in a network and hence 

increasing speed of diffusion, but it might cause under-adoption. On the other hand, 

cliquish networks (highly clustered network) facilitate building up an early customer 

base, but it inhibits rapid diffusion. So the best strategy would be to work with a mix of 

both strategies. Kuandykov and Sokolov [19] compare random networks to scale free 

networks. Alkemade and Castaldi [6] discuss about different types of networks and 

threshold in theses networks, as shown in Figure 2.2. 
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Figure 2.3 Speed of diffusion varying randomness and personal threshold (h) [13] 

 

In the case of random networks, there are three cases: random network with each 

node having same number of neighbors, 3 clusters connected sequentially and absolutely 

symmetrical social network in which, all agents can establish links with other agents from 

their native or other clusters. Initial number of adopters for all simulations is 30. In case 

of scale free networks, most agents have few links (nodes) while some have lots of 

connection (hubs). The two cases for scale free networks are hubs and nodes as initial 

adopters. 

 

The author states that diffusion was slower when the network was totally random 

compared to when random networks were divided into clusters. The diffusion flowed 

from adopter cluster to other clusters depending on the way they were connected. 
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In case of scale free networks [19], which are networks whose degree distribution 

follow a power law, diffusion in hubs as initial adopters case was way faster than the 

case, where nodes were the initial adopters. The reason for this observation is 

“information equality”, where a network with higher information equality has higher 

diffusion of innovation. The authors claim that in random network, the diffusion of 

information is faster if network is split into clusters. Longer diffusion time in case of 

scale free network is related to lower information equality in comparison to random 

networks. Diffusion in scale free network is faster if initial adopters are hubs instead of 

nodes. 

 

2.3   Child safety in Vehicles 

 

Road crashes have been the leading cause of minor and fatal injuries amongst children in 

Canada, who are less than 14 years in age. Approximately 2 children die or are seriously 

injured everyday as a result of road crashes [41]. Different universities, non-profit 

organizations and government agencies have done numerous studies and surveys to 

figure out the reasons behind non-usage and misuse of proper child safety measures in 

vehicles. This section provides a small overview on these studies and their findings. 

 

 Apsler et al. [42] make an attempt to increase the usage of booster seats amongst 

low-income parents. A pre-test/post test design was conducted in daycare centers with 

post-test observation leading up to 8 weeks after the intervention. Parents participated in 
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an educational training and received free seats. Educational programs were provided to 

daycare staffs and children, and signs were put up in parking lot. This reduced the 

percentage of unrestrained children in vehicles from 56% to 26%. Ebel et al. [43] 

conducted a survey to measure booster seat usage and determine the factors predictive of 

proper child restraint and assess parental reasons for booster seat use and non-use. Cross-

sectional, observational studies were done in Seattle, Washington and Portland, Oregon, 

where drivers were surveyed after picking up children from schools and daycare centers. 

Trained observers recorded child height, weight and age and directly observed restraint 

use. This was compared to recommended restrained method based on child’s observed 

age, weight and height. Only 16.5% of children who should be in a booster seat were 

properly restrained compared with 80% of younger children, for whom, child safety seat 

was recommended. Relative to a 4-year-old child, a 6-year-old was half as likely to be in 

a proper booster seat. Many parents incorrectly believed that children are safe in a 

seatbelt and that they have outgrown the need of a special car seat. 

 

 Lee et al. [44] performed a study, which investigates child safety knowledge, the 

attitude and belief about booster seats in Latino parents. They also explore the effective 

strategies for message delivery in Latino community. Focus groups were conducted with 

Spanish speaking parents and information was collected through written survey and 

discussions. They found out that parents were widely misinformed about rules and 

guidelines for booster seat usage. Most of the participants did not own a booster seat. It 

was concluded that culture specific campaigns are needed to promote booster seat usage 

in Latino community. The guidelines should be preferably provided in Spanish.  
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 Factors that influence use of booster seats in a multiethnic community are 

explored in Johnston et al. [45].  Three focus groups were conducted with low-income 

residents of central and southeast Seattle, Washington. Participants were especially 

sought from Somali, Vietnamese and African American communities. Recruitment of 

participants was done through posters, flyer and information booths at clinics, community 

centers etc. It was found out that participants expressed a lack of understanding about the 

working of booster seats in protecting child passengers, and how are they differ from a 

car seat. They attributed the lack of usage to ignorance or laziness among community 

members who do not value their children’s life. They even expressed concerns regarding 

their own capability to practice usage of booster seats consistently. There were a lot of 

differences noted in different ethnic and linguistic groups. A need of education and 

training around booster seats and law requiring their use was identified.  

 

 Intervention studies about child safety in vehicles were done in Zaza et al. [46] 

and Pierce et al. [47].  A systematic development team reviewed scientific evidences of 

effectiveness of five interventions to increase child safety seat usage [46]. Community 

wide information plus enhanced enforcement campaigns and incentive plus educational 

programs had sufficient evidence of effectiveness. Education only programs aimed at 

parents, young children and healthcare professionals were seen as not being that effective 

comparatively. The main objective of [47] was to determine the knowledge level of head 

start providers, parents and students about booster seats. Booster seat usage before and 

after a combined educational program and booster seat giveaway was also observed.  
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2.4   Agent-based Models on Child Safety in Vehicles 

	  

In this section, the discussion is about work done in area of child vehicle safety using 

agent-based models. The general agent-based framework, which has been used for 

prediction of knowledge flow, child safety knowledge in this case, and the factors that 

affect the knowledge spread are explored.  

 

2.4.1 Effects of Culture 

 

Kobti et al. [18] discuss about modeling effects of social influence on driver behavior in 

applying child vehicle safety restraint. They use a cultural algorithm for the same. It 

enables drivers to learn from their individual driving experience with an option for 

immediate feedback from an expert intervention source following an accident. The 

cultural algorithm enables population level learning and captures dominant social beliefs 

among the drivers. 

 

Situational knowledge is implemented in the belief space, which is based on top 

performing drivers. It was seen that in presence of a cultural belief system, the system 

that measures the correctness of use of child vehicle safety was positively influenced. But 

on the other hand, the population was more resilient to changes after an intervention. This 

portrayed that culture plays an important role when it comes to interventions and should 

be considered as a major factor by health practitioners. The introduction of cultural 
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framework is modeled to present a realistic reflection of the population model. It plays an 

important role in guiding the learning process of drivers after an intervention by health 

care practitioners.  

 

Figure 2.4 The Cultural Algorithm [18] 

The cultural algorithm consists of a population and a belief space. The selected 

individuals from the population contribute to the knowledge in belief space depending on 

the acceptance function. The knowledge in the belief space is manipulated and changed 

based on individual experiences and their success or failures. The knowledge controls the 

evolution of the population using an influence function [Figure 2.4].  

  

It was seen that learning from the expert source alone was most efficient. In the 

absence of cultural influence, the population demonstrated the most efficient use of child 
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safety measures [Figure 2.5]. The system resists change when cultural influences are 

present. The intervention methods both at population and individual levels were hindered 

by cultural buffer, which suggests that despite having some improvement, the system did 

not reach its full potential.  

 

Figure 2.5 Average health loss in children in presence of social network (bottom) and its absence 

(top) [18] 
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2.4.2 Effects of Social Influence 

	  

In a framework which is socially motivated, the modeled agents or drivers are able to 

identify friendships and neighboring relations. In Kobti et al. [19], both positive and 

negative exemplars are used in the cultural algorithm to guide the belief at population 

level. Based on evolving individual experiences and changes in the belief system, both 

positive and negative exemplars influence the overall children population health and 

improved the possibility of drivers selecting the correct child seat.   

 

The belief space is restricted to situational knowledge, where it encapsulates sets 

of best and worst examples taken from most influential individual experiences. Agents 

with positive experiences contribute to the good knowledge patterns and the one ones 

with bad experiences are used to prevent individuals from selecting failed strategies. 

Belief space is updated every 7 days, where population space is searched for top 2% of 

the best and worst drivers with best and worst performance, and the belief space is 

updated with their knowledge.  

 

 It was observed that the drivers were able to learn from both positive and negative 

experiences. Maintaining a set of worst patterns enabled the drivers to avoid the common 

mistakes and improve their performance. The negative pattern turns into a lesson, which 

need not be repeated by new drivers and hence contributing to learning process. 
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Figure 2.6 Average health loss in children in presence of belief space (top) and both belief space 

and intervention (bottom) [19] 

 

2.4.3 Effects of Reputation 

	  

Modeling reputation of agents in a complex social simulation presents a significant 

challenge due to its distinct social nature. Kobti et al. [20] introduces a notion of 

reputation into child vehicle safety simulation. They hypothesize that selective 
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intervention criteria would achieve a better system convergence and introduces reputation 

as a variable for the same. They establish a generic reputation framework that tests 

alternate formalizations of reputation models.  

 

 Reputation refers to trustworthiness of an agent in an artificial society. This 

framework allows external injection of knowledge, or intervention in health sciences, or a  

new strategy into the artificial society. They claim that a better performance can be 

achieved if agents could be carefully selected under some social criteria allowing 

efficient knowledge propagation in the society through the network. At each time step, 

the model is updated to reflect the changed reputation of agents. The algorithm, which is 

responsible for driving the logic of agent collaboration is also altered.  Agents use the 

reputation to decide on the transfer and level of acceptance of the transferred knowledge. 

 

 The first reputation model assumes that reputation of an agent only depends on its 

degree of connectivity to the social network around it. The second model extends the 

previous models saying that reputation should also depend on quality of knowledge (QK) 

of the agent. The Reputation Index (RI) also depends on Income level (IL) and Education 

level (EL), which are more of agent properties rather than something that depends on the 

social network. The authors claim that from a network perspective, high degree nodes in 

a social network are not sufficient to be considered along in a reputation model, but rather 

a model rich with domain knowledge and agent characteristics would be more favorable.  
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2.4.4 Predictive Data Mining 

 

Ahmed et al. [5] explore the use of predictive data mining, which aims at exploration of 

parameters that initialize the child safety model. They claim that existing data from 

surveys can be examined using data mining tools, exploring beyond basic statistics what 

parameters and values can be most relevant for a more realistic model run. The intent is 

to make the model replicate real world conditions as closely as possible, mimicking the 

survey data. This helps to discover patterns amongst drivers who have higher probability 

of improper usage of child car seats. 

 

 This framework uses predictive data mining technique to make predictions about 

values of data used in an agent-based model, using known results found from survey data. 

It focuses on predictive data mining technique using decision tree classification. A 

decision tree is a series of questions systematically arranged so that each question queries 

an attribute (e.g. age of the driver) and branches based on the value of the attribute. At 

leaves of the tree are placed predictions of the class variable (e.g. type of car seat used). 

The proposed architecture collects survey data from a database and generates a Decision 

Tree model on the fly. It also provides an Application Program Interface (API), which 

will be used by the Car seat model for initialization, prediction and validation. The 

system constitutes of three modules namely Data pre-processing module, Data mining 

module and API module. It highlights that data mining techniques can be used in agent-

based models to overcome the gap between the real world and simulation. 
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Figure 2.7 Predictive Data Mining: The Architecture [5] 

 

2.5   Domain of Thesis 

 

Figure 2.8 represents the domain of work done in our research study. It explains different 

concepts and theories that have been used to construct the whole framework. We have 

used Random network [19] to implement Social network. The heterogeneity of agents has 
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been extended to use of agents with different profiles in this research work. The 

initializations of model and agent parameters are being done through data mining of 

survey database and we are using empirical validation to validate our model. Then we 

implement the intervention policy testing framework, which is a totally new contribution 

by this thesis.  

 

 

 

Figure 2.8 Domain of Thesis 
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CHAPTER 3 

SOLUTION FRAMEWORK 
 

The solution framework proposed in this thesis is divided into two major steps. Step one 

concerns with initialization of the agent-based model using predictive data mining on 

survey database, and validation of the model as shown in Figure 3.1. Step two involves 

using an intervention policy framework to test performance of different intervention 

strategies on the agent-based model. These intervention policies can be tested using brute 

force method or a genetic algorithm [Figure 3.2]. 

 

3.1   Initialization and Validation of Agent-Based Model 

 

1. A survey database is created, which is based on a real world problem. 

2. Predictive data mining is performed on the survey database. 

3. An agent-based model is conceptualized and implemented based on the real world 

problem. 

4. Agent profile parameters like age, gender etc. are initialized using the data from 

the database. 

5. Agent behavior parameters are initialized by the mined data that we get after the 

predictive data mining. 

6. The agent-based model is executed and final result is compared against the 

database for validation.  
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Figure 3.1 Framework for Validation of Agent-based Model 

 

3.2   Intervention Policy Framework 

 

1. Use the validated agent based model from section 3.1 

2. Generate intervention policies using Intervention policy generator and test them 

on the agent based model. 

3. Intervention policy generator can generate policies using brute force method or 

genetic algorithm. 

4. The performance of an intervention policy can be tested by the final result it 

produces, when that policy is applied on the agent-based model. 

5. These different policies can now be compared against each other using their 

performance and cost as a measure, to come up with best possible policies.  
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Figure 3.2 Intervention Policy Framework 

 

In the next upcoming sections, we discuss implementation of this framework on child 

safety measures in vehicles. 
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CHAPTER 4 

CHILD SAFETY SURVEY DATA ANALYSIS 

	  

The Canadian National Survey on Child Restraint use [29,41] was conducted by 

Transport Canada in partnership with Auto21 [30] and professors from Business and 

Statistics department at University of Windsor. This study was a follow up to the 2006 

National child seat survey submitted to Transport Canada in 2007. In the previous 

technical report on Canadian National Survey on Child Restraint Use (2007), it was 

found that although most drivers used some type of safety restraint system, the rate of 

correct use of safety seats varied among different age groups. This survey was used as the 

base for construction and validation of the agent-based model.  

 

In this survey, participants were asked 9 questions related to Child safety measures in 

cars. This survey was done in 5 provinces of Canada. The questions asked in the survey 

were as follows: 

 

1. What is the correct age to move a child from rear facing seat to a forward facing 

seat? 

2. What is the correct weight to move a child from rear facing seat to a forward 

facing seat?  

3. What is the correct height to move a child from rear facing seat to a forward 

facing seat? 

4. What is the correct age to move a child from forward facing seat to a booster seat? 
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5. What is the correct weight to move a child from forward facing seat to a booster 

seat? 

6. What is the correct height to move a child from forward facing seat to a booster 

seat? 

7. What is the correct age to move a child from booster seat to a seat with seat belt? 

8. What is the correct weight to move a child from booster seat to a seat with seat 

belt? 

9. What is the correct height to move a child from booster seat to a seat with seat 

belt? 

 

Apart from these questions, each participant was asked the following personal 

information. Except for age, all the questions were multiple-choice. The possible options 

for each question are mentioned below along with the question: 

 

1. Age: Numeric Value 

 

2. Gender: 1 = Male 

              2 = Female 

 

3. Marital Status: 1 = Single 

                         2 = Married/ Common law 

                         3 = Separated/ Divorced 

                         4 = Widowed 
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4. Ethnicity: 1 = Caucasian 

                 2 = Native Canadian 

                 3 = African Canadian 

                 4 = Asian 

                 5 = Arabic 

                 6 = Hispanic 

                 7 = East Indian 

                 8 = Other 

 

5. Income Level: 1 = Under $20,000 

                        2 = $20,000 – 40,000 

                        3 = $40,000 – 60,000 

                        4 = $60,000 – 80,000 

                        5 = Over $80,000 

 

6. Education level: 1 = Grade School 

                           2 = Some High school 

                           3 = High School Graduate 

                           4 = Some post-High School 

                           5 = College Diploma/ Certificate 

                           6 = University Degree 
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7. Population of city person lives in: 1 = Over 300,000 

                                                       2 = Between 100,000 – 300,000 

                                                       3 = Between 30,000 – 100,000 

                                                       4 = Between 1,000 – 30,000 

                                                       5 = Under 1,000 

 

8. Was first driver training done in Canada: 1 = Yes 

                                                                              2 = No 

 

 The response to each question was noted and kept for records. After the 

participants took the survey, an informative pamphlet was provided to each of them. 

These pamphlets contained the correct information about child safety measures in cars, 

including the correct answers to questions asked above. This stage is called as initial 

intervention in our study, when each participant is intervened/provided with knowledge 

about child safety. 

 

 After the first stage of questionnaire, the same survey is done again after 6 

months, where same people who participated in stage one of the survey answer same 

questions for the second time. This gives us a quantitative measure of their knowledge 

about child safety measures in cars at two different times. This collected knowledge is 

put through the process of Data mining, Data Pre-processing, Regression analysis and 

Decision Tree formation, so that the agent-based model can be prepared and initialized 

with the processed data from the dataset. This will result in a better agent-based model, 
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which is closer to real world, when compared to simulations that use random values for 

initialization of agent parameters.  

 

4.1   Data Mining/Pre-processing 

	  

After the surveys were done and the data was collected, came the stage of data cleaning, 

mining and pre-processing. This is a necessary step, as the data collected cannot be used 

in an agent-based model to initialize different parameters in its current form. This data 

has to go through a process of cleaning and pre-processing, so that it’s fit to be used by 

the agent-based model for parameter initialization and other purposes. The actions taken 

to make the dataset capable of being used are explained below. 

 

4.1.1 Data Cleaning 

 

Data cleaning is the process of detection, correction and removal of corrupt records from 

a dataset, to get rid of all the dirty data and hence making it usable.  All the entries in the 

provided dataset, which were not entered properly for every field were got rid off. All the 

fields should be properly entered for every person who took the survey; or-else the record 

is unusable for the agent-based model. 484 usable entries were left after getting rid of all 

the corrupt data. This meant that 484 participants took the survey properly and hence a 

maximum of 484 agents can be used in the agent-based model.    
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4.1.2 Data Pre-Processing 

	  	  

After the process of data cleaning, data pre-processing was performed on the dataset to 

make it usable with the agent-based model. The main objective of this process is to break 

and convert the dataset into a format, which can be parsed by our agent-based model as a 

.csv file, and can be used to automatically initialize different parameters in the 

simulation. The main pre-processing, that were performed on the dataset are explained 

below.  

 

Pre-Processing on Age 

 

In the given dataset, age was represented by a numeric value for e.g. 24. Since properties 

like age, marital status etc. are being used to create different agent profiles, using the 

actual numeric value of age for agents will result in numerous agent profiles, which 

might make the results less conclusive. For example, if age of all the participants ranges 

from 20 to 60, this will give 40 different agent profiles under age, which is a lot to handle 

for the agent-based model. Hence age is categorized into 4 groups. These groups are 

20s(20-29), 30s(30-39), 40s(40-49) and 50s(50-59). The value of age in different records 

is changed accordingly. For example, 24 is replaced by 20, 36 is replaced by 30 etc. This 

gives just 4 different groups in our age field, which makes the job for framework easier. 
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Converting knowledge to bits 

 

The designed framework deals with knowledge of the agents in a specific format. To 

have a quantitative measure for knowledge level of participants, the knowledge of every 

participant is needed in a bit format. As we see in section 4.1, there were 9 questions 

asked to every participant in the survey. Each of these questions has a correct answer, as 

stated below.  

1. What is the correct age to move a child from rear facing seat to a forward facing 

seat? – 12 months 

2. What is the correct weight to move a child from rear facing seat to a forward 

facing seat? – 26 inches 

3. What is the correct height to move a child from rear facing seat to a forward 

facing seat? – 22 pounds 

4. What is the correct age to move a child from forward facing seat to a booster seat? 

– 48 months 

5. What is the correct weight to move a child from forward facing seat to a booster 

seat? – 40 inches 

6. What is the correct height to move a child from forward facing seat to a booster 

seat? – 40 pounds 

7. What is the correct age to move a child from booster seat to a seat with seat belt? 

– 96 months 

8. What is the correct weight to move a child from booster seat to a seat with seat 

belt? – 57 inches 
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9. What is the correct height to move a child from booster seat to a seat with seat 

belt? – 80 pounds 

For each of these questions, the answer given by the participant was either correct or 

incorrect. To convert these answers to bit format, “1” was assigned when the answer 

given was correct and “0” for every incorrect answer. This converts the knowledge of 

participants about child safety measures into a bit format, which is then easier to be dealt 

with while using the agent-based model. 

 

Knowledge Level 

 

Due to the pre-processing done in previous section, the knowledge of each and every 

participant is now converted into bit format. Since there were 9 questions asked in the 

original survey, the knowledge of each participant can be represented by a 9-bit array, 

where each bit represents a value, which tells us if the participant answered that particular 

question correctly or not. So the typical knowledge of a participant will look like below 

 

 Knowledge:  

 

 

Each bit above represents if the participant gave the answer to the question associated 

with that bit correctly or not, depending on the value of the bit (“0” or “1”). This is called 

the knowledge array. 

 

0 1 1 0 0 1 0 1 0 
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 Now knowledge level of each participant can be derived from the above given 

knowledge array. Knowledge level is simply defined as the number of “1”s in the 

knowledge array. So for the knowledge array shown above, the knowledge level will be 

4. It is to be noted that the knowledge level is a value between 0 and 9, 0 being the least 

possible knowledge level and 9 being the highest. So eventually, there are two knowledge 

levels for every participant; initial knowledge, which is the knowledge level on day 1 

from the survey before the intervention stage and final knowledge, which is the 

knowledge level on day 180 of the survey. These are named Ki and Kf. The knowledge 

change Kc is defined as the difference between Ki and Kf. Hence 

 

Kc = Kf - Ki 

Kc can hold a numeric value between -9 to +9.  

 

4.2   Regression Analysis 

 

Regression analysis is a statistical analysis technique, which is used to estimate 

relationship between different variables. Analysis and modeling of relationships between 

a dependent variable and many independent variables can be done using this type of 

analysis. It lets us examine how the values of a dependent variable change when an 

independent variable varies. SPSS is used to perform this analysis, which is a statistical 

analysis software tool from IBM [31]. 
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 In the given survey, the agent profile i.e. age, gender, education level etc. are the 

independent variables and knowledge change Kc is the dependent variable. There is an 

assumption made that the knowledge change of the participants is dependent on their 

agent profile. Regression analysis is used to explore how properties of the participants 

affect their knowledge change and to what extent. 

 

Some other data pre-processing is performed on the database before the start of 

regression analysis. To establish a proper relationship between dependent and 

independent variables, the distribution of data should be reasonable among different 

variables. Upon examination, it was seen that out of 484 entries, more than 90% have 

‘Caucasian’ as their ‘Ethnicity’ and ‘Married’ as their ‘Marital status’. Therefore it can be 

concluded that data distribution within these variables was not significant enough to be 

included in our regression analysis as an independent variable. The relationship between 

these variables and knowledge change might not be accurate due to lack of even 

distribution of data. Therefore, age, gender, income level, education level, driver training 

and population of city are used as independent variables and knowledge change is the 

dependent variable.  

 

The accuracy of regression analysis is highly dependent on the number of 

probable values of dependent variable that are being predicted. Lesser the number of 

possible outcomes of dependent variables, the stronger will be the relationship between 

dependent and independent variables. The possible values of dependent variables Kc here 
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are 19 (from -9 to +9). We divide this knowledge change into three categories as show 

below: 

 

Knowledge change = Decrease, if Kc is between -9 and -3 

Knowledge change = Constant, if Kc is between -3 and +3 

Knowledge change = Increase, if Kc is between +3 and +9 

 

 The possible outcomes of dependent variable, knowledge change, are reduced to 3 

using the classification shown above. The numbers of possible outcomes for the 

independent variables are also reduced, as not every outcome has significant number of 

entries. After this process, the dataset takes the following structure:  

 

1. Age: 20 = in 20s 

         30 = in 30s 

         40 = in 40s or greater than 40  

 

2. Gender: 1 = Male 

              2 = Female 

 

3. Income Level: 1 = Under $20,000 

                        2 = $20,000 – 40,000 

                        3 = $40,000 – 60,000 

                        4 = $60,000 – 80,000 
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                        5 = Over $80,000 

 

4. Education level: 1 = Grade school/ Some High school/ High school graduate 

   2 = Some Post-High school 

                           3 = College Diploma/ Certificate 

                           4 = University Degree 

 

5. Population of city person lives in: 1 = Over 300,000 

                                                       2 = Between 100,000 – 300,000 

                                                       3 = Between 30,000 – 100,000 

                                                       4 = Under 30,000 

 

6. Was first driver training done in Canada: 1 = Yes 

                                                                              2 = No 

 This new modified dataset now goes though the process of regression analysis, 

where age, gender, income level, city population, education level and country of driver 

training are the independent variables and modified knowledge change, as explained 

above is the dependent variable. Table 4.1 shows the result of regression analysis. 
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Coefficients 

 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta   

 

(Constant) .348 .245  1.421 .156 

Parent Age -.005 .005 -.048 -1.005 .546 

Parent Gender .041 .080 .024 .515 .606 

Income Level -.056 .028 -.102 -2.016 .044 

Driver Training -.081 .074 -.053 -1.090 .276 

City Population .067 .032 .098 2.105 .036 

Education Level .022 .036 .032 .605 .315 

 Dependent Variable: Knowledge Change  

 

Table 4.1 Regression Analysis 

 

In the above table, the field of importance is ‘Sig.’. This field is an indicator of strength 

of relationship between the independent and dependent variable. The lower the value in 

this field, the stronger is the relationship. The 4 independent variables with the lowest 

value for the study i.e. City Population, Income Level, Education Level and Driver 

Training are chosen for further investigation. These variables have a strong effect 

individually on the knowledge change of the participants who took the survey according 

to the result of regression analysis. 
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4.3   Decision Tree 

	  

A decision tree is a tool that helps us in decision support, using a tree like model of 

decisions and their consequences. It even includes probability by which the outcomes 

occur, their resource cost, and utility. It helps in identifying strategies by which the set 

goal can be achieved. When used with data mining, it describes data but not decisions. 

The resulting tree can be used as input for decision-making, as in the case below. 

 

A J48 pruned tree will be constructed here, using Weka data mining tool [32, 34]. 

Pruning is a process in machine learning by which the size of a decision tree can be 

reduced. This is done by removing sections of the tree which provide a little power of 

classification of instances. The goal of pruning a tree is to reduce complexity and have 

improved accuracy by removal of sections which are based on noisy data. J48 is an open 

source java implementation of the C4.5 algorithm of decision tree generation [33]. This 

implementation is done in the Weka data-mining tool [34], which will be used in this 

study. The nodes of the tree are different values of independent variables that we 

selected, and the leaves of the tree are the predicted knowledge change of the survey 

participant, based on the dataset. The tree generated by Weka is shown in Table 4.2 

 

The prediction being performed here is if the knowledge of the agent will increase, be 

constant or decrease. This is done to increase accuracy of the decision tree. It can be seen 
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that given population of the city, income level, education level and country of driver 

training, we can predict the knowledge change Kc of an agent. The value in parentheses is 

a ratio of number of cases that follow the rule to those who don’t. This decision tree can 

now be used as an input to the agent-based model and decide the learning rate LR of each 

agent-based on agent properties and the decision tree. The agents, whose predicted 

knowledge change is ‘Increase’ are given a highest learning rate and those with 

‘Decrease’ are given the lowest. 
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J48 pruned tree 
------------------ 
 
City Population = > 300,000 
|   Education Level = University Degree: Increase (107.0/62.0) 
|   Education Level = College Diploma: Constant (50.0/27.0) 
|   Education Level = High School Graduate 
|   |   Income Level = > $80,000: Constant (5.0/3.0) 
|   |   Income Level = $60,000 to $80,000: Decrease (4.0/2.0) 
|   |   Income Level = $40,000 to $60,000: Constant (4.0/2.0) 
|   |   Income Level = < $20,000: Increase (18.0/9.0) 
|   |   Income Level = $20,000 to $40,000: Increase (4.0/2.0) 
|   Education Level = Some Post High School 
|   |   Income Level = > $80,000: Constant (7.0/2.0) 
|   |   Income Level = $60,000 to $80,000: Increase (4.0/1.0) 
|   |   Income Level = $40,000 to $60,000: Increase (1.0) 
|   |   Income Level = < $20,000: Decrease (2.0) 
|   |   Income Level = $20,000 to $40,000: Constant (4.0/1.0) 
City Population = 30,000 to 100,000 
|   Income Level = > $80,000 
|   |   Education Level = University Degree 
|   |   |   Driver Training = Canada: Increase (22.0/10.0) 
|   |   |   Driver Training = Outside Canada: Constant (7.0/3.0) 
|   |   Education Level = College Diploma: Constant (9.0/3.0) 
|   |   Education Level = High School Graduate: Increase (3.0) 
|   |   Education Level = Some Post High School: Constant (4.0/2.0) 
|   Income Level = $60,000 to $80,000 
|   |   Education Level = University Degree 
|   |   |   Driver Training = Canada: Constant (5.0/1.0) 
|   |   |   Driver Training = Outside Canada: Increase (3.0/1.0) 
|   |   Education Level = College Diploma: Constant (21.0/8.0) 
|   |   Education Level = High School Graduate: Increase (6.0/2.0) 
|   |   Education Level = Some Post High School: Increase (5.0/1.0) 
|   Income Level = $40,000 to $60,000 
|   |   Education Level = University Degree: Constant (9.0/5.0) 
|   |   Education Level = College Diploma: Increase (7.0/2.0) 
|   |   Education Level = High School Graduate: Constant (4.0) 
|   |   Education Level = Some Post High School: Increase (5.0/2.0) 
|   Income Level= < $20,000: Decrease (11.0/5.0) 
|   Income Level = $20,000 to $40,000: Increase (13.0/7.0) 
City Population = 1,000 to 30,000: Increase (61.0/29.0) 
City Population = 100,000 to 300,000: Constant (79.0/43.0) 
 

 
Table 4.2 Decision Tree for Learning rate of agents 
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CHAPTER 5 

AGENT-BASED MODEL 

 

Once the processes of data cleaning, pre-processing, regression analysis and decision tree 

formation were completed, the data was ready to be used in agent-based model. The 

multi-agent system was developed in a specific manner, so that the processed data from 

the survey can be used to initialize various parameters in the simulations, which normally 

would have been randomly initialized.  

	  

5.1  Repast 

	  
Repast stands for “The Recursive Porous Agent Simulation Toolkit”. It’s a widely used 

cross platform, open source and free agent-based modeling and simulation toolkit. David 

Sallach, Nick Collier, Tom Howe, Michael North and others developed Repast at 

University of Chicago. Currently Repast is being managed by “Repast Organization for 

Architecture and Development” (ROAD). Repast has been implemented in numerous 

languages like C++, Java, Python, .NET etc. The main features of repast are: 

• Object oriented architecture 

• Multi-platform 

• Concurrent and discrete event scheduler 

• Support for social networking tools 

• In-built libraries for neural networks, genetic algorithms etc. 

• Result logging and graphing tools 
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• Dynamic run time modification of agents and model is permissible 

The version of Repast used to create the simulation here is RepastJ [35], which is the 

Java based version of Repast. 

	  

5.1.1 General Repast Setup 

	  

Repast works in a two-step process, namely simulation preparation and simulation 

running. Terminology for a single run of the simulation is a ‘tick’. A simulation requires 

at least two classes, one for describing the agents in the model and other for describing 

the model itself. The model class ‘AutoSimModel’ inherits ‘SimpleModelImpl’ class 

from the Repast library, where latter overrides the methods provided by the former. There 

are methods, which are used to setup the simulation, and there are methods that are used 

to run the simulation. The two main parts of an agent-based model are Model class and 

Agent class.  

 

 The Agent class contains model specific information about the agents being used 

in the simulation. Model class creates agents using the agent class. Agent class consists of 

all the properties of the agents and get/set methods, which make these agent properties 

accessible to the Model class. The Model class has following parts 

• Main Method: Creates instance of the model 

• Variable for Model Infrastructure: These variables are the initial parameters for 

the model run. They also consist of variables that are responsible for size of 

environment, number of agents, number of time steps etc. 
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• Repast template methods: These methods have to be defined in Model class for 

proper running of the simulation. These include 

o buildSchedule() : Defines which methods are to be run and when 

o buildDisplay() : Creates displays. We don’t use this feature, as it doesn’t 

work for batch runs 

o buildModel() : This is the main method that creates the model. All the 

agents and environment variables are created here and process of data 

collection happens here. 

• Get/set Methods: These methods are used to change or retrieve the model 

infrastructure variables 

•  Interface Methods: These methods are part of SimpleModelImpl interface. These 

mostly concern with the initial parameters, name and setup of the simulation. 

• Simulation specific methods: These are the methods, which are exclusive to a 

particular simulation. These define the logic and algorithms used in the 

simulation. 

	  

5.1.2 Repast Setup for AutoSimModel 

	  

There are 1000 agents in the simulation. 484 agents amongst these 1000 represent 484 

participants from the survey. They are initiated with the same agent profile (age, gender, 

education level etc.) and initial knowledge Ki as in the survey. The agent profile, 

attributes and knowledge of the additional 516 agents are randomly decided, while 

maintaining the average knowledge of population before the survey.	  These agents are not 
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considered while calculating the average knowledge of the environment in later stages. 

The goal here is to be as close as possible to the real world, and hence the need of these 

dummy agents in the environment, as the people who took the survey interact with other 

people in real life, who have not been a part of the survey. Their use and importance in 

the simulation will be explained in detail in the coming sections. The simulation is run for 

180 ticks, representing 180 days, as in the survey. The initialization process of all the 

agent parameters is explained in detail in next section. 

	  

5.2  Initialization of Agent parameters/attributes 

	  
Most of the agent parameters in the simulation can be directly initiated from the survey 

data. These parameters include agent age, gender, city population, income level, 

education level, country of driver training and initial agent knowledge Ki. The 

information about these parameters can be found in chapter 3. There are 4 other agent 

attributes, namely Learning rate, Knowledge deterioration rate, Accident rate and 

Reputation, which are to be initialized for every agent. These attributes play a very 

important role in the operation of the simulation. The initialization process of each of 

these is explained below. 

 

5.2.1 Learning Rate 

 

Learning rate Lr of an agent is the probability by which it acquires and remembers 

knowledge when provided to it. This knowledge can be given during an intervention, or 
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the knowledge from belief space or knowledge acquired during interaction in agent’s 

social network. Learning rate is used in all these scenarios. The results of decision tree 

from section 4.3 are used to decide learning rate for agents.  The decision tree predicts if 

the final knowledge level Kf of agents will decrease, be constant or increase after the 180 

days period. It is assumed that if the final knowledge is being predicted to increase for an 

agent, that agent has a higher learning rate. So the learning rate of agents, after calibration 

of the model, are decided as shown below 

 

 Lr = .3, if prediction by decision tree is ‘Increase’ 

 Lr = .1, if prediction by decision tree is ‘Constant’ 

 Lr = 0, if prediction by decision tree is ‘Decrease’ 

  

5.2.2 Knowledge Deterioration Rate 

 

Knowledge deterioration rate Kdr is the rate by which an agent loses its knowledge of 

child safety measures in cars per day. This rate is different for every agent and is 

calculated by the formula below  

 

Kdr = ( Ki + ( Lr * Kint) – Kf ) / 180 

  

Where Ki = Initial knowledge of agent on day 1 before intervention 

  Kf = Final knowledge of agent on day 180  

  Kint = Knowledge provided during intervention 
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Lr = Learning rate of the agent 

5.2.3 Driving probability 

 

Driving probability Dp is the probability of an agent driving a vehicle in a day. This has 

been derived from Canada Motor Vehicle Traffic Collision Statistic 2010 [36]. Its 

constant for every agent with a value of 0.3 

 

5.2.4 Accident Rate 

 

Accident rate Ar is the probability of an agent getting into an accident while it is driving. 

This has been derived from Canada Motor Vehicle Traffic Collision Statistic 2010 [36]. 

Its constant for every agent with a value of 0.007 

 

5.2.5 Reputation 

 

Reputation R is the probability by which an agent influences knowledge of other agents 

in its social network. It’s a measure of his/her ‘reputation’ in the social network. Since 

the survey has no information about the social network aspect of the participants, the 

value of reputation is kept at a constant value of .4 
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5.3  Algorithms in the Simulation 

 

An agent-based model is a collection of different algorithms running on agents at 

different specified time intervals. There are three basic algorithms running in the 

simulation, namely Basic Intervention Framework, Cultural Algorithm and Social 

Network. All three algorithms work in tandem to achieve the desired result of the 

simulation. Details of each of the algorithm are explained in detail below. 

 

5.3.1 Basic Intervention Framework 

 

Everyday, an agent decides to drive depending on their driving probability Dp. If they 

drive, they can get into an accident based on their accident rate Ar. Once in an accident, 

they have to go through an intervention about child safety measures, where they learn the 

corresponding correct knowledge Kint in accordance to their learning rate Lr.   

 

5.3.2 Cultural Algorithm 

 

Cultural algorithm is a branch of Evolutionary computing, which consists of a population 

and belief space [37,38]. Evolution takes place at both cultural level (belief space) and at 

population level (for each individual). Belief space is a cultural knowledge, which is 

shared amongst all the agents in the population. Selected elite individuals contribute to 

cultural knowledge by means of an acceptance function. This knowledge manages the 
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evolution of population based on an influence function, thereby sharing it with all the 

agents in the population.  

 

Cultural algorithm is used in the simulation to spread the common knowledge 

about child safety in cars amongst all the agents. There is a belief space, which is updated 

by the average knowledge of the best drivers using an acceptance function. This belief 

space is updated weekly with the average knowledge of the top 5% drivers with the best 

knowledge in the population. Everyday, a collection of randomly selected agents update 

their knowledge from knowledge in belief space Kbelief using an influence function. The 

agents learn this knowledge in accordance to their learning rate Lr [Figure 4.1]. 

 

5.3.3 Social Network 

 

Every agent has its own social network and there is a reputation R associated with every 

agent. This reputation gives us a measure of influence that a particular agent has on other 

agents in its social network. Everyday, a randomly selected collection of agents reach out 

in their social network and update their knowledge depending on the knowledge of other 

agents. Agents in their social network are influenced based on their reputation R. The 

agent collects the knowledge from the social network but only updates it if there is a 2/3rd 

majority amongst the agents in its social network. The agents learn this knowledge in 

accordance to their learning rate Lr [Figure 4.1]. 

 



www.manaraa.com

	  

55	  
	  

	  

Figure 5.1 Cultural Algorithm and Social Network 

 

5.4  Flow of Simulation 

 

The algorithms mentioned above all work in harmony along with each other in the agent-

based model for 180 ticks, which represents 180 days as in the survey. The aim of the 

simulation is to be as close as possible to the real world. If the final average knowledge of 

all the 484 agents after 180 days is close to that as in the survey, then this claim can be 

confirmed. We don’t take knowledge of other 516 random agents into account, as they 

were not a part of the initial survey and there is no method of validating their knowledge. 

The flow of the simulation, along with initialization and its working is explained in the 

algorithm below   
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5.4.1 Algorithm 

 

1. Create the simulation environment 

2. Create 1000 agents 

3. Initialize 484 agents with agent profiles and knowledge from the survey database. 

Initialize their agent attributes (Lr, Dp, Ar, R) as explained in previous sections.   

4. Initialize rest of 516 agents with random agent profiles, agent attributes and 

knowledge.  

5. Randomly create social network for every agent.  

6. Make every agent out of 484 agents in the survey go through an intervention and 

inject them with the intervention knowledge Kint on day 1 of the simulation. 

Agents learn this knowledge based on their learning rate Lr. 

7. Calculate initial belief space knowledge Kbelief of the whole population. This 

knowledge is the average knowledge of top 5% of all the drivers.  

8. Execute the following steps everyday for 180 days (1 day = 1 tick of agent-based 

model):  

a. Reduce the knowledge of agents based on their individual knowledge 

deterioration rate Kdr. 

b. Every agent decides to drive or not based on its driving probability Dp. If 

they are driving, they might get into an accident based on their accident 

rate Ar. If in an accident, they go through an intervention where they are 

injected with knowledge about car safety Kint. Agent learns this knowledge 

based on on their learning rate Lr. 
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c. Update knowledge of a collection of randomly chosen agents using 

knowledge from belief space. They learn the belief space knowledge Kbelief 

depending on their individual learning rate Lr. 

d. Update knowledge of a collection of randomly chosen agents from their 

social network. An agent contacts agents in its social network and inquires 

about their knowledge. It then updates its knowledge based on learning 

rate Lr if it gets a 2/3rd majority about the knowledge in the social network. 

9. Update the belief space knowledge Kbelief every 7 days of the simulation.  

10. If the number of days is less than 180, go to step 8.  

11. At day 180, calculate the average knowledge level of all the 484 agents in the 

simulation, who were a part of the survey. Compare this average knowledge to 

average knowledge from the survey on day 180. 
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5.4.2 Flowchart of Agent-Based Model 

 

Figure 5.2 Flowchart of Agent-based Model 
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CHAPTER 6 

INTERVENTION POLICY FRAMEWORK 

 

In sections 3 and 4 above, a simulation on child safety in vehicle was created, which is 

close to real world scenario. This was done using a survey database as a basis for creating 

the simulation and performing regression analysis and decision tree algorithms on it. This 

processing of database helped with initialization of different parameters of the agent-

based model, which decide the final outcome and result of the simulation.  

  

 Now, this simulation can be used to measure performance of different 

intervention policies, which can be implemented on the population in order to increase 

the awareness about child safety. Many of these policies have been discussed in [46,47]. 

An intervention is a policy implemented by government or a similar organization to 

educate people about child safety in vehicles. These interventions policies are costly to 

implement and the cost depends on number of interventions being performed. In 

upcoming sections, we discuss about different intervention policies, which can be 

implemented in our simulation and different methods of finding the best intervention 

policies.   

 

6.1  Intervention Policy 

 

An Intervention Policy is defined as the methodology of performing an intervention and 

deciding the subset of population that will be a part of that intervention. Cost of an 
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intervention policy will depend on number of people who are included in that 

intervention. As discussed in section 3.2, the population in database has following 

properties 

1. Age: 20 = in 20s 

         30 = in 30s 

         40 = in 40s or greater than 40  

 

2. Gender: 1 = Male 

              2 = Female 

 

3. Income Level: 1 = Under $20,000 

                        2 = $20,000 – 40,000 

                        3 = $40,000 – 60,000 

                        4 = $60,000 – 80,000 

                        5 = Over $80,000 

 

4. Education level: 1 = Grade school/ Some High school/ High school graduate 

   2 = Some Post-High school 

                           3 = College Diploma/ Certificate 

                           4 = University Degree 

 

5. Population of city person lives in: 1 = Over 300,000 

                                                       2 = Between 100,000 – 300,000 
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                                                       3 = Between 30,000 – 100,000 

                                                       4 = Under 30,000 

 

6. Was first driver training done in Canada: 1 = Yes 

                                                                              2 = No 

 

The selection of people who have to go through the intervention can be based on 

these properties. Each intervention policy can either include or exclude people from 

specific categories. This will decide the number of people being intervened by that 

specific intervention policy and also cost of that intervention policy. The intervention has 

to be repeated after a specified number of days. Hence each intervention policy has three 

parts. 

1. Number of days after which the process of intervention is repeated 

2. Different profiles of people who are being included in the policy 

3. Cost of Intervention policy 

 

The number of days after which the interventions are repeated is fixed at 20 for all the 

experiments in the thesis, but this can be easily changed. The intervention policy is 

simulated in the agent-based model and the model is then run for 180 days. The average 

final knowledge Kfavg of the population is calculated on day 180 and is used as the 

performance measure for that intervention policy. The cost for each intervention policy is 

also calculated, which is basically the number of individual interventions that happened 
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during 180 days period. An example of an intervention policy based on agent properties 

is given below: 

 

Age<20,30> // Include people in age group 20s (20-29) and 30s (30-39) 

Gender <Male, Female> // Include both Males and Females 

Training <In Canada, Outside Canada> // Include people trained in and outside Canada 

Income level < 20000-40000,40000-60000,over 80000> // Include people from these 

income groups 

City Population < under 30000,30000-100000,100000-300000> // Include people from 

cities of these population level 

Education Level <High School Grad or under, Some post High School, College Diploma, 

University Degree> // Include people with these education level 

 

Intervention Policy  

 

It should be noted that the logical operation within different options of same 

property is OR and the logical operation between different properties is AND. Hence the 

policy above can be represented logically as 

 

{Age: 20 OR 30} AND {Gender: Male OR Female} AND {Training: In Canada OR 

Outside Canada} AND {Income Level: 20000-40000 OR 40000-60000 OR Over 80000} 

AND {City Population: under 30000 OR 30000-100000 OR 100000-300000} AND 

{Education Level: High School Grad or under OR Some post High school OR College 

Diploma OR University Degree} 

 

Intervention Policy as combination of Logical Operations 

 



www.manaraa.com

	  

63	  
	  

This intervention policy can be encoded in the simulation using a simple bit 

string, where each bit takes a value of 0 or 1 depending on whether that option/property is 

being included in the intervention policy or not. The intervention policy above can be 

encoded in bit string as follows. 

Age Gender Primary Driver Training 
20 30 40 Male Female In Canada Outside Canada 
1 1 0 1 1 1 1 

 
Income Level 

Under $20000 $20000-$40000 $40000-$60000 $60000-$80000 Above $80000 
0 1 1 0 1 

 
Population of City 

Over 300,000 100,000 - 300,000 30,000 – 100,000 Under 30,000 
0 1 1 1 

 
Education Level 

Grade School, 
Some High School, 

High School 
Graduate 

Some Post High 
School 

College Diploma/ 
Certificate 

University Degree 

1 1 1 1 
 

Intervention Policy represented in bit string 

 

The final bit string that represents the above intervention policy has a length of 20 

bit and is represented as follows 

1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 

 

Final bit string representing Intervention Policy 

 

When simulation is initialized with intervention policy represented by bit string shown 

above, it gives us an Average final knowledge Kfavg, which is performance measure of 



www.manaraa.com

	  

64	  
	  

that policy. It also gives the cost of the intervention policy, which is basically the number 

of individual interventions performed if done every 20 days within a 180 day time period 

on the people who were a part of that intervention policy. 

 

In the next sections, we discuss about methods, which were used to test these 

intervention policies and methods to come up with best intervention policy within a given 

cost. 

  

6.2  Brute force Method 

	  

Brute force method is also known as proof by exhaustion, proof by cases or perfect 

induction [48]. It’s a type of mathematical proof, in which the statement to be proved is 

split into a finite number of cases and each and every case is examined. It involves 

systematically enumerating all possible outcomes of a problem and checking each one of 

them. 

 

 A 20-bit string, as shown above represents an intervention policy. Each bit can 

hold a value of either 0 or 1. The total number of combinations possible for intervention 

bit string are 2^20= 1048576. This is the total number of possible intervention polices, 

although many of them might not produce any results.  All these possible intervention 

policies can be brute-forced on the simulation one by one, resulting in 1048576 different 

simulation runs, which will result in the same number of Average final knowledge Kfavg 

and cost of intervention policy. All this can be documented for further analysis through 
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which effects of including people of different agent properties in intervention policy can 

be analyzed based on the final average knowledge.  

 

6.3  Genetic Algorithm 

 

Genetic algorithm [50] is a class of evolutionary algorithm, which generates solutions to 

optimization problems using techniques, which are inspired by process of natural 

evolution and selection. This search heuristic is mostly used to generate solutions for 

optimization and search problems. A population of candidate solutions, known as 

individuals, is evolved towards a better solution for an optimization problem. Each 

candidate has a set of properties, known as its chromosome, which is mutated and altered 

throughout different evolving generations. Traditionally, solutions are represented as a 

binary string of 0 and 1, but other representations are possible too. 

 

 The evolution starts from a generation consisting of a population of randomly 

generated individuals. Fitness of each individual in the generation is calculated. Fitness is 

a measure of performance of an individual towards the optimization problem being 

solved. The more fit individuals are stochastically selected from the population and these 

individuals go through a process of crossover, based on the crossover probability of the 

algorithm. Crossover is a genetic process in which, two parent genes create child genes. 

An example of process of crossover is shown below 
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Parent Gene 1 
a b c d e f g h i j 

 
Parent Gene 2 

0 1 2 3 4 5 6 7 8 9 
 

Child Gene 1 
a b c d e 5 6 7 8 9 

 
Child Gene 2 

0 1 2 3 4 f g h i j 
   

Figure 6.1 Process of Crossover 

 

After crossover, these children genes go through process of mutation, where the bits of 

these genes are altered depending on algorithm’s mutation probability. This whole 

process is repeated till the formation of a new generation of individuals. Then fitness of 

individuals in this new generation is calculated. Thereafter, the whole iterative process is 

repeated till we reach a satisfactory fitness level or for a maximum number of 

generations.  

 

 This method of reaching a solution using genetic algorithm is used to find the best 

intervention policy under a given cost. It might not always be possible to brute force the 

policies if total number of policies is very large. Use of a genetic algorithm is preferred in 

those cases. Since intervention policies are represented by bit string, the genetic 

algorithm can be used for the same easily. The whole process is discussed in detail in the 

next chapter.   
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CHAPTER 7 

EXPERIMENTS AND RESULTS 

 

7.1  Agent-Based Model 

	  

The model was run to simulate 180 days, in which different aspects and algorithms used 

in our multi-agent system and the final result from the original survey were compared 

against each other. In Figure 6.1, CA represents Cultural Algorithm, SN represents Social 

Network and INT represents basic Intervention framework. 4 different runs were 

performed using different combinations of algorithms discussed in section 4.3 against 

each other and compared their performance. These are: 

• Cultural algorithm, Social network and Intervention framework: On 

• Cultural algorithm and Intervention framework: On; Social network: Off  

• Social network and Intervention framework: On; Cultural algorithm: Off 

• Intervention framework: On; Social network and Cultural algorithm: Off 

 

As we see in Figure 6.1, the best result is displayed when everything is kept on. This 

means that the average knowledge is highest when cultural algorithm, social network and 

intervention all work together. This is closely followed by the run in which only social 

network is off. The poorest performing run is when just intervention and social network 

were kept on. The run with just intervention framework shows an improvement over the 

former. 
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Figure 7.1 Average knowledge of Child Safety over 180 days 

 

The experiments suggest that maximum diffusion of knowledge is achieved when 

cultural algorithm, social network and intervention all work together. Social network has 

a marginal effect on the increase of average knowledge, as the knowledge being spread 

through the social network might not always be the correct knowledge. In fact, in absence 

of a cultural algorithm, a social network might prove to be harmful for spread of correct 

knowledge. We can infer that social network performs better for spread of knowledge 

when a considerable number of people already have the correct knowledge, or else it 

might backfire and spread incorrect knowledge. When compared to the average final 

knowledge from the survey at day 180, as we can see from Figure 6.1, the closest 

performance is given by simulation in which social network was off, cultural algorithm 
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and intervention framework were on. This indicates that information exchange due to 

social network rarely happened amongst the people who took the survey. This represents 

a simulation, which gives us a very close picture of what happened in real world during 

those 180 days.  

 

We can conclude that belief space and cultural learning play a big role in the spread 

of knowledge. In other observations, we see that during the simulations with cultural 

algorithm, the belief space quickly reached a constant value and rarely changed in later 

stages of the simulation, suggesting that most of the knowledge gained was amongst 

people with lower knowledge level and people with higher knowledge level didn’t 

improve their knowledge much. It was also observed that when social network was kept 

on, a large number of populations ended up having the same exact knowledge, indicating 

a mass convergence of knowledge.   

 

7.2  Intervention Policy: Brute Force Method 

 

Brute forcing of all the possible intervention policies on the simulation was done on a 16-

core system. The whole problem was divided into 16 smaller denominations, which can 

be all executed in parallel. Windows Powershell [49], a task based command line and 

scripting language was used for the same. Below is the technical specification of the 

software and hardware used for brute force. 

 

Operating System: Windows Server 2008 
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Processor: Intel Xeon E5520 @2.27 GHz (16 CPUs) 

Memory: 24566MB RAM 

Netbeans IDE 6.9.1 

Windows Powershell 

 

The result of the brute force is stored in a .csv (comma separated value) file. It’s 

observed that out of possible 1048576 intervention policies, there were 394151 cases 

where at least one intervention was performed, as not all policies resulted in actual 

interventions due to their logical nature. This gives us with 394151 different intervention 

policies and their corresponding Average final knowledge and cost. Further analysis is 

performed on this .csv file to examine the effect of including different agent properties in 

intervention policy on average final knowledge of the whole population. It should be re-

instated that these analysis results are based on results given by the agent-based 

simulation and might need further explanation/validation by field experts.  

 

Figure 7.2 Comparison of Average Final Knowledge in different Age groups 
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Figure 7.3 Comparison of Average Final Knowledge in different Gender groups 

 

 

 

 

Figure 7.4 Comparison of Average Final Knowledge in different City Population 
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Figure 7.5 Comparison of Average Final Knowledge in different Income Levels 

 

 

 

 

Figure 7.6 Comparison of Average Final Knowledge in different Countries of Primary driver 
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Figure 7.7 Comparison of Average Final Knowledge in different Education Level 
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7.3  Intervention Policy: Genetic Algorithm 

 

In section 5.3, it was discussed how genetic algorithm can be used to find best or a set of 

best intervention policies given a maximum cost. Government agencies and policy 

makers usually have budgetary restrictions while making these intervention policies. The 

absolute best policy would be obviously to perform an intervention on the whole 

population frequently, but this will require a lot of individual interventions and cost of 

implementing this policy would be really high. Genetic algorithm can help in finding the 

best intervention policy, which will give best results, under a specific budgetary 

restriction; cost of intervention in this case. The experiments were performed under 

following conditions. 

• Crossover Probability: Low (.2), Medium (.5), High (.8) 

• Mutation Probability: Low(.01), Medium (.05), High (.10) 

• Maximum cost of intervention policy: 1500 

• Number of individuals in each generation: 10 

• Number of generations: 50 

• Selection method for parent genes: Roulette wheel method [51] 

 

Roulette wheel selection method [51] is a way of selection of parent genes for 

crossover and other genetic process, so that the next generation genes can be created. 

This method works on basic principle of a roulette wheel. The better the fitness of a 

specific gene is, the larger area it is assigned on a roulette wheel. Hence its probability of 

being selected is higher than that of genes that have a lower fitness, but still the selection 
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is not guaranteed. The fitness used in this genetic algorithm is the Average final 

knowledge Kfavg of the policy described by that individual gene. Higher the Kfavg of a 

policy, higher the fitness of that gene is. If the cost of the policy is above 1500, it’s 

fitness given a penalty based on a penalty function.  

 

The aim here was to come up with intervention policies, which will produce best 

results under the intervention cost of 1500. Using the .csv file created by brute force 

method, the best intervention policy and the associated Average final knowledge Kbf for 

this condition can be easily extracted. Therefore, the performance of genetic algorithm 

can be measure using this Average final knowledge Kbf as benchmark. The results of the 

experiment is documented in table 6.1 

 

Crossover Probability  

Mutation Probability 

Low: .20 Medium: .50 High: .80 

Low: .01 90.90% 89.30% 88.21% 

Medium: .05 92.08% 93.61% 96.66% 

High: .10 95.97% 96.30% 96.64% 

 

Table 7.1: Sensitization Table for Genetic Algorithm 

 

As evident from the table above, different runs were done of genetic algorithm using 

different combinations of Crossover probability and Mutation probability for better 

results. An average of 10 runs was taken for better consistency. The percentages in the 

table indicate how close was the average of 10 runs to Kbf. The best result (96.66%) was 

given by the genetic algorithm, when Mutation probability was .05 and Crossover 

probability was .80. This means that this genetic algorithm, after 50 generations, gives us 
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intervention policies, using which results in an Average final knowledge, which is 

96.66% of Kbf. The list of 10 best policies from this genetic algorithm is explained in 

Appendix B.  For purpose of comparison, the best 10 policies under the cost of 1500, 

when using brute force method, are explained in Appendix A.  

	  

7.4  Explanation of methodology and results on an abstract level 

 

There was a short discussion about ‘Diffusion of Innovation’ [1-3] in section 2.3 of this 

thesis. There is a wider application of the work done in this thesis on an abstract level 

when it comes to theory of Diffusion of Innovation. Diffusion of Innovation is a theory 

that seeks to explain how, why and at what rate do new ideas and knowledge spread 

through cultures. It also explores the factors that affect these patterns and extent of 

knowledge flow and tries to predict the same. Comparing this theory to work done in this 

research study, innovation can be compared to knowledge about child safety in vehicles; 

the interventions can be compared to different advertising methods, which are used to 

promote the innovations.  It is evident that given another similar data set in some field of 

Innovation diffusion; a similar model and framework can be created using the 

methodology discussed in this research. Hence, although the possibilities were limited in 

this research work due to limited nature of available dataset, the scope of application of 

used methodology is quite broad by making minimal changes to it.  	  



www.manaraa.com

	  

77	  
	  

CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

Our work was motivated by an ongoing societal challenge, namely, improving child 

safety in vehicles.  Part of this challenge involves changing behaviours regarding proper 

usage of safety technologies, such as child safety restraints.  In order to produce changes 

requires interventions whose design and implementation is complex and may be well-

served using agent based modeling approaches.  

 

In this thesis, a method of creating a close-to-real-world scenario agent-based 

model on child safety in vehicles using a survey database was developed. In chapter 2, 

we reviewed research done in the field of child safety in vehicles, and on knowledge flow 

patterns and prediction using multi-agent systems. In chapter 3, discussion was on 

different types of data cleaning and pre-processing that were performed on the survey 

database. Use of regression analysis to determine driver characteristics that affected 

knowledge change and decision tree formation on those characteristics was also 

described in the same chapter. In chapter 4, we created a framework to test different 

intervention policies on this agent-based simulation. These intervention policies were 

based on different characteristic and properties of the population who took the initial 

survey. Two methods were used to test these intervention policies. We used an 

exhaustive, or brute force, approach to test all the possible combinations of intervention 

policies and document the final results along with cost of performing each intervention 
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policy. We also used genetic algorithm as a method to find the best intervention policies 

that can be put into action, given a limitation on maximum cost of the policy.  

 

 The results from the experiments give us an insight on many aspects of child 

safety measures in vehicles.  These include the following. (a) The agent-based model 

shows that belief space and cultural learning play a big role in the spread of knowledge. 

(b) We also infer that social network performs better for spread of knowledge when a 

considerable number of people already have the correct knowledge; however, it might 

backfire and spread incorrect knowledge under certain circumstances. (c) Through 

analysis of results produced by brute force method of different intervention policies, it 

was seen that interventions works best on population with high income and knowledge, 

as they learn and retain more knowledge during interventions. (d) Also, younger age 

group population and females will respond better to interventions. (e)On average, 

interventions done in bigger cities will yield better results that those done in smaller 

cities. It should be noted that these results are based on the results produced by agent-

based simulation and might require validation and explanation by field experts. By using 

genetic algorithm, we can quickly find a list of best possible intervention policies under a 

given cost that can be implemented on the population.  

 

 A future extension of this work would involve implementing the same 

methodology on a different database that is related to knowledge/innovation flow in a 

population. A similar framework can be developed for intervention or marketing to 

promote the innovation or knowledge. More work is required on making social networks 
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more realistic and surveys can be designed in ways that provide computer scientists with 

information about social network of the agents to work with. This would provide more 

capability for validation of the proposed methodology and establish the correctness of the 

framework used.   
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APPENDICES 

Appendix A: Best Intervention Policies (Brute Force Method) 

	  

Below are the 10 best intervention policies by Brute force method. The number of days 

between each intervention is 20 days and maximum cost of intervention is 1500 units. 

Cost of intervention is defined as number of interventions that occur during a period of 

180 days under that specific policy. Predicted Final Average knowledge is the predicted final 

average knowledge, by the simulation, using that specific policy. The explanation of a specific 

policy is given below: 

Example of an Intervention policy 

Age<20,30> // Include people in age group 20s (20-29) and 30s (30-39) 

Gender <Male, Female> // Include both Males and Females 

Training <In Canada, Outside Canada> // Include people trained in and outside Canada 

Income level < 20000-40000,40000-60000,over 80000> // Include people from these income 

groups 

City Population < under 30000,30000-100000,100000-300000> // Include people from cities of 

these population level 

Education Level <High School Grad or under, Some post High School, College Diploma, 

University Degree> // Include people with these education level 

 

10 Best policies 

1. Age <20,30> 

Gender <Male, Female> 
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Training <In Canada > 

Income level <20000-40000,40000-60000,60000-80000,over 80000> 

City Population <under 30000,30000-100000,100000-300000, over 300000> 

Education Level <College Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.768 

Cost of Intervention: 1386 

 

2. Age <30> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000,40000-60000,60000-80000,over 

80000> 

City Population <30000-100000, over 300000> 

Education Level <Some post High School, College Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.760 

Cost of Intervention: 1494 

 

3. Age <20,30> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level < 20000-40000,40000-60000,over 80000> 

City Population < under 30000,30000-100000,100000-300000> 

Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.752 

Cost of Intervention: 1467 

 

4. Age <30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000,40000-60000,60000-80000> 
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City Population <under 30000,30000-100000,100000-300000, over 300000> 

Education Level <College Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.714 

Cost of Intervention: 1341 

 

5. Age <30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000,40000-60000,60000-80000,over 

80000> 

City Population <under 30000, over 300000> 

Education Level <College Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.698 

Cost of Intervention: 1404 

 

6. Age <30,40> 

Gender <Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000,40000-60000,over 80000> 

City Population < under 30000,30000-100000,100000-300000, over 300000> 

Education Level <High School Grad or under, Some post High School, University 

Degree> 

Predicted Final Average knowledge through simulation: 5.696 

Cost of Intervention: 1341 

 

7. Age <20,30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 40000-60000,60000-80000,over 80000> 

City Population <100000-300000, over 300000> 

Education Level <Some post High School, University Degree> 
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Predicted Final Average knowledge through simulation: 5.690 

Cost of Intervention: 1386 

 

8. Age <30,40> 

Gender <Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000, over 80000> 

City Population < under 30000,30000-100000,100000-300000, over 300000> 

Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.683 

Cost of Intervention: 1458 

 

 

9. Age <20,30> 

Gender <Male, Female> 

Training <In Canada> 

Income level <20000-40000,40000-60000, over 80000> 

City Population < under 30000,30000-100000,100000-300000, over 300000> 

Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.683 

Cost of Intervention: 1458 

 

 

10. Age <30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000,40000-60000, over 80000> 

City Population <30000-100000, over 300000> 
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Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.681 

Cost of Intervention: 1386 
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Appendix B: Best Intervention Policies (Genetic Algorithm) 

	  

Below are the 10 best intervention policies by Genetic Algorithm method. The number of 

days between each intervention is 20 days and maximum cost of intervention is 1500 

units. Cost of intervention is defined as number of interventions that occur during a 

period of 180 days under that specific policy. Predicted Final Average knowledge is the 

predicted final average knowledge, by the simulation, using that specific policy. 

 

1. Age <30,40> 

Gender <Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000,40000-60000, over 80000> 

City Population < under 30000,30000-100000,100000-300000, over 300000> 

Education Level <High School Grad or under, Some post High School, University 

Degree> 

Predicted Final Average knowledge through simulation: 5.696 

Cost of Intervention: 1341 

 

2. Age <20,30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 40000-60000,60000-80000,over 80000> 

City Population <100000-300000, over 300000> 

Education Level <Some post High School, University Degree> 

Predicted Final Average knowledge through simulation: 5.690 

Cost of Intervention: 1386 

 

3. Age <20,30> 
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Gender <Female> 

Training <In Canada, Outside Canada> 

Income level <20000-40000,60000-80000,over 80000> 

City Population < under 30000,30000-100000, over 300000> 

Education Level <Some post High School, College Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.654 

Cost of Intervention: 1377 

 

4. Age <20,30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000,60000-80000,over 80000> 

City Population < under 30000,30000-100000,100000-300000, over 300000> 

Education Level <University Degree> 

Predicted Final Average knowledge through simulation: 5.642 

Cost of Intervention: 1494 

 

5. Age <30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <20000-40000,60000-80000,over 80000> 

City Population < under 30000, over 300000> 

Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.636 

Cost of Intervention: 1440 

 

6. Age <30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <over 80000> 
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City Population < under 30000,30000-100000,100000-300000, over 300000> 

Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.634 

Cost of Intervention: 1485 

 

7. Age <20,30,40> 

Gender <Female> 

Training <In Canada, Outside Canada> 

Income level <20000-40000,40000-60000,60000-80000,over 80000> 

City Population <30000-100000, over 300000> 

Education Level <College Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.626 

Cost of Intervention: 1395 

 

8. Age <20,30,40> 

Gender <Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 40000-60000,60000-80000,over 80000> 

City Population <30000-100000, over 300000> 

Education Level <High School Grad or under, Some post High School, University 

Degree> 

Predicted Final Average knowledge through simulation: 5.621 

Cost of Intervention: 1458 

 

9. Age <20,30,40> 

Gender <Female> 

Training <In Canada> 

Income level < 40000-60000,60000-80000,over 80000> 

City Population < under 30000,30000-100000, over 300000> 
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Education Level <High School Grad or under, Some post High School, College 

Diploma, University Degree> 

Predicted Final Average knowledge through simulation: 5.613 

Cost of Intervention: 1386 

 

10. Age <20,30,40> 

Gender <Male, Female> 

Training <In Canada, Outside Canada> 

Income level <under 20000, 20000-40000,60000-80000,over 80000> 

City Population <100000-300000, over 300000> 

Education Level <High School Grad or under, University Degree> 

Predicted Final Average knowledge through simulation: 5.613 

Cost of Intervention: 1395 
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